Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Hum Mol Genet ; 33(6): 520-529, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38129107

RESUMEN

Intellectual Disability (ID) is the major cause of handicap, affecting nearly 3% of the general population, and is highly genetically heterogenous with more than a thousand genes involved. Exome sequencing performed in two independent families identified the same missense variant, p.(Gly611Ser), in the NDST1 (N-deacetylase/N-sulfotransferase member 1) gene. This variant had been previously found in ID patients of two other families but has never been functionally characterized. The NDST1 gene encodes a bifunctional enzyme that catalyzes both N-deacetylation and N-sulfation of N-acetyl-glucosamine residues during heparan sulfate (HS) biosynthesis. This step is essential because it influences the downstream enzymatic modifications and thereby determines the overall structure and sulfation degree of the HS polysaccharide chain. To discriminate between a rare polymorphism and a pathogenic variant, we compared the enzymatic properties of wild-type and mutant NDST1 proteins. We found that the p.(Gly611Ser) variant results in a complete loss of N-sulfotransferase activity while the N-deacetylase activity is retained. NDST1 shows the highest and the most homogeneous expression in the human cerebral structures compared to the other members of the NDST gene family. These results indicate that a loss of NDST1 N-sulfation activity is associated with impaired cognitive functions.


Asunto(s)
Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Acetilglucosamina , Cognición , Patrón de Herencia , Proteínas Mutantes , Sulfotransferasas/genética
3.
Mol Cell Proteomics ; 22(8): 100617, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37453717

RESUMEN

Chondroitin sulfate proteoglycans (CSPGs) control key events in human health and disease and are composed of chondroitin sulfate (CS) polysaccharide(s) attached to different core proteins. Detailed information on the biological effects of site-specific CS structures is scarce as the polysaccharides are typically released from their core proteins prior to analysis. Here we present a novel glycoproteomic approach for site-specific sequencing of CS modifications from human urine. Software-assisted and manual analysis revealed that certain core proteins carried CS with abundant sulfate modifications, while others carried CS with lower levels of sulfation. Inspection of the amino acid sequences surrounding the attachment sites indicated that the acidity of the attachment site motifs increased the levels of CS sulfation, and statistical analysis confirmed this relationship. However, not only the acidity but also the sequence and characteristics of specific amino acids in the proximity of the serine glycosylation site correlated with the degree of sulfation. These results demonstrate attachment site-specific characteristics of CS polysaccharides of CSPGs in human urine and indicate that this novel method may assist in elucidating the biosynthesis and functional roles of CSPGs in cellular physiology.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato , Sulfatos de Condroitina , Humanos , Sulfatos de Condroitina/química , Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Polisacáridos , Secuencia de Aminoácidos
4.
J Exp Med ; 220(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37462672

RESUMEN

Mast cells (MCs) are tissue-resident immune cells that exhibit homeostatic and neuron-associated functions. Here, we combined whole-tissue imaging and single-cell RNA sequencing datasets to generate a pan-organ analysis of MCs in mice and humans at steady state. In mice, we identify two mutually exclusive MC populations, MrgprB2+ connective tissue-type MCs and MrgprB2neg mucosal-type MCs, with specific transcriptomic core signatures. While MrgprB2+ MCs develop in utero independently of the bone marrow, MrgprB2neg MCs develop after birth and are renewed by bone marrow progenitors. In humans, we unbiasedly identify seven MC subsets (MC1-7) distributed across 12 organs with different transcriptomic core signatures. MC1 are preferentially enriched in the bladder, MC2 in the lungs, and MC4, MC6, and MC7 in the skin. Conversely, MC3 and MC5 are shared by most organs but not skin. This comprehensive analysis offers valuable insights into the natural diversity of MC subtypes in both mice and humans.


Asunto(s)
Mastocitos , Membrana Mucosa , Humanos , Ratones , Animales , Transcriptoma/genética
5.
PLoS Genet ; 18(2): e1010067, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192612

RESUMEN

Chondroitin/dermatan sulfate (CS/DS) proteoglycans are indispensable for animal development and homeostasis but the large number of enzymes involved in their biosynthesis have made CS/DS function a challenging problem to study genetically. In our study, we generated loss-of-function alleles in zebrafish genes encoding CS/DS biosynthetic enzymes and characterized the effect on development in single and double mutants. Homozygous mutants in chsy1, csgalnact1a, csgalnat2, chpfa, ust and chst7, respectively, develop to adults. However, csgalnact1a-/- fish develop distinct craniofacial defects while the chsy1-/- skeletal phenotype is milder and the remaining mutants display no gross morphological abnormalities. These results suggest a high redundancy for the CS/DS biosynthetic enzymes and to further reduce CS/DS biosynthesis we combined mutant alleles. The craniofacial phenotype is further enhanced in csgalnact1a-/-;chsy1-/- adults and csgalnact1a-/-;csgalnact2-/- larvae. While csgalnact1a-/-;csgalnact2-/- was the most affected allele combination in our study, CS/DS is still not completely abolished. Transcriptome analysis of chsy1-/-, csgalnact1a-/- and csgalnact1a-/-;csgalnact2-/- larvae revealed that the expression had changed in a similar way in the three mutant lines but no differential expression was found in any of fifty GAG biosynthesis enzymes identified. Thus, zebrafish larvae do not increase transcription of GAG biosynthesis genes as a consequence of decreased CS/DS biosynthesis. The new zebrafish lines develop phenotypes similar to clinical characteristics of several human congenital disorders making the mutants potentially useful to study disease mechanisms and treatment.


Asunto(s)
Dermatán Sulfato , Pez Cebra , Animales , Sulfatos de Condroitina/metabolismo , Dermatán Sulfato/genética , Dermatán Sulfato/metabolismo , Glicosiltransferasas/genética , Fenotipo , Pez Cebra/genética , Pez Cebra/metabolismo
6.
Glycobiology ; 32(6): 518-528, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35137078

RESUMEN

NDST1 (glucosaminyl N-deacetylase/N-sulfotransferase) is a key enzyme in heparan sulfate (HS) biosynthesis, where it is responsible for HS N-deacetylation and N-sulfation. In addition to the full length human enzyme of 882 amino acids, here designated NDST1A, a shorter form containing 825 amino acids (NDST1B) is synthesized after alternative splicing of the NDST1 mRNA. NDST1B is mostly expressed at a low level, but increased amounts are seen in several types of cancer where it is associated with shorter survival. In this study, we aimed at characterizing the enzymatic properties of NDST1B and its effect on HS biosynthesis. Purified recombinant NDST1B lacked both N-deacetylase and N-sulfotransferase activities. Interestingly, HEK293 cells overexpressing NDST1B synthesized HS with reduced sulfation and altered domain structure. Fluorescence resonance energy transfer-microscopy demonstrated that both NDST1A and NDST1B had the capacity to interact with the HS copolymerase subunits EXT1 and EXT2 and also to form NDST1A/NDST1B dimers. Since lysates from cells overexpressing NDST1B contained less NDST enzyme activity than control cells, we suggest that NDST1B works in a dominant negative manner, tentatively by replacing the active endogenous NDST1 in the enzyme complexes taking part in biosynthesis.


Asunto(s)
Heparitina Sulfato , Sulfotransferasas , Aminoácidos/genética , Células HEK293 , Heparitina Sulfato/química , Humanos , Mutación , Sulfotransferasas/metabolismo
7.
Methods Mol Biol ; 2303: 139-150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626376

RESUMEN

Heparan sulfate proteoglycans are important modulators of cellular processes where the negatively charged polysaccharide chains interact with target proteins. The sulfation pattern of the heparan sulfate chains will determine which proteins will bind and the affinity of the interactions. The N-deacetylase/N-sulfotransferase (NDST) enzymes are of key importance during heparan sulfate biosynthesis when the sulfation pattern is determined. In this chapter, metabolic labeling of heparan sulfate with [35S]sulfate or [3H]glucosamine in cell cultures is described, in addition to characterization of polysaccharide chain length and degree of N-sulfation. Methods to measure NDST enzyme activity are also presented.


Asunto(s)
Heparitina Sulfato/química , Antígenos de Grupos Sanguíneos , Fenómenos Químicos , Sulfatos , Sulfotransferasas
8.
J Histochem Cytochem ; 69(1): 49-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33216642

RESUMEN

The biosynthesis of heparan sulfate (HS) proteoglycans occurs in the Golgi compartment of cells and will determine the sulfation pattern of HS chains, which in turn will have a large impact on the biological activity of the proteoglycans. Earlier studies in mice have demonstrated the importance of HS for embryonic development. In this review, the enzymes participating in zebrafish HS biosynthesis, along with a description of enzyme mutants available for functional studies, are presented. The consequences of the zebrafish genome duplication and maternal transcript contribution are briefly discussed as are the possibilities of CRISPR/Cas9 methodologies to use the zebrafish model system for studies of biosynthesis as well as proteoglycan biology.


Asunto(s)
Vías Biosintéticas , Heparitina Sulfato/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Sistemas CRISPR-Cas , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Heparitina Sulfato/genética , Mutación , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Matrix Biol ; 93: 43-59, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32201365

RESUMEN

Heparan sulfate (HS) regulates the activity of many signaling molecules critical for the development of endochondral bones. Even so, mice with a genetically altered HS metabolism display a relatively mild skeletal phenotype compared to the defects observed in other tissues and organs pointing to a reduced HS dependency of growth-factor signaling in chondrocytes. To understand this difference, we have investigated the glycosaminoglycan (GAG) composition in two mouse lines that produce either reduced levels of HS (Ext1gt/gt mice) or HS lacking 2-O-sulfation (Hs2st1-/- mice). Analysis by RPIP-HPLC revealed an increased level of sulfated disaccarides not affected by the mutation in both mouse lines indicating that chondrocytes attempt to restore a critical level of sulfation. In addition, in both mutant lines we also detected significantly elevated levels of CS. Size exclusion chromatography further demonstrated that Ext1gt/gt mutants produce more but shorter CS chains, while the CS chains produced by (Hs2st1-/- mice) mutants are of similar length to that of wild type littermates indicating that chondrocytes produce more rather than longer CS chains. Expression analysis revealed an upregulation of aggrecan, which likely carries most of the additionally produced CS. Together the results of this study demonstrate for the first time that not only a reduced HS synthesis but also an altered HS structure leads to increased levels of CS in mammalian tissues. Furthermore, as chondrocytes produce 100-fold more CS than HS the increased CS levels point to an active, precursor-independent mechanism that senses the quality of HS in a vast excess of CS. Interestingly, reducing the level of cell surface CS by chondroitinase treatment leads to reduced Bmp2 induced Smad1/5/9 phosphorylation. In addition, Erk phosphorylation is increased independent of Fgf18 treatment indicating that both, HS and CS, affect growth factor signaling in chondrocytes in distinct manners.


Asunto(s)
Condrocitos/citología , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , N-Acetilglucosaminiltransferasas/genética , Sulfotransferasas/genética , Animales , Proliferación Celular , Células Cultivadas , Condrocitos/metabolismo , Heparitina Sulfato/química , Humanos , Ratones , Ratones Transgénicos , Mutación , Fosforilación , Cultivo Primario de Células , Transducción de Señal
10.
Glycobiology ; 29(6): 479-489, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30869121

RESUMEN

A class of carbohydrate-modified proteins, heparan sulfate proteoglycans (HSPGs), play critical roles both in normal development and during disease. Genetic studies using a model organism, Drosophila, have been contributing to understanding the in vivo functions of HSPGs. Despite the many strengths of the Drosophila model for in vivo studies, biochemical analysis of Drosophila HS is somewhat limited, mainly due to the insufficient amount of the material obtained from the animal. To overcome this obstacle, we generated mutant cell lines for four HS modifying enzymes that are critical for the formation of ligand binding sites on HS, Hsepi, Hs2st, Hs6st and Sulf1, using a recently established method. Morphological and immunological analyses of the established lines suggest that they are spindle-shaped cells of mesodermal origin. The disaccharide profiles of HS from these cell lines showed characteristics of lack of each enzyme as well as compensatory modifications by other enzymes. Metabolic radiolabeling of HS allowed us to assess chain length and net charge of the total population of HS in wild-type and Hsepi mutant cell lines. We found that Drosophila HS chains are significantly shorter than those from mammalian cells. BMP signaling assay using Hs6st cells indicates that molecular phenotypes of these cell lines are consistent with previously known in vivo phenomena. The established cell lines will provide us with a direct link between detailed structural information of Drosophila HS and a wealth of knowledge on biological phenotypic data obtained over the last two decades using this animal model.


Asunto(s)
Carbohidrato Epimerasas/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteoglicanos de Heparán Sulfato/metabolismo , Mutación , Sulfatasas/genética , Sulfotransferasas/genética , Animales , Carbohidrato Epimerasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Fenotipo , Sulfatasas/metabolismo , Sulfotransferasas/metabolismo
11.
Front Immunol ; 9: 1670, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30073001

RESUMEN

Mast cells (MCs) are characterized by an abundance of lysosome-like secretory granules filled with immunomodulatory compounds including histamine, cytokines, lysosomal hydrolases, MC-restricted proteases, and serglycin proteoglycans. The latter are essential for promoting the storage of other granule compounds and are built up of the serglycin core protein to which highly sulfated and thereby negatively charged glycosaminoglycan (GAG) side chains of heparin or chondroitin sulfate type are attached. In the search for mechanisms operating in regulating MC granule homeostasis, we here investigated the role of mitogen-activated protein kinase (MAPK) signaling. We show that inhibition of MEK1/2 (a MAPK kinase) leads to increased metachromatic staining of MC granules, indicative of increased proteoglycan content. Indeed, MEK1/2 inhibition caused a profound increase in the expression of the gene coding for the serglycin core protein and of genes coding for various enzymes involved in the biosynthesis/sulfation of the GAGs attached to the serglycin core protein. This was accompanied by corresponding increases in the levels of the respective GAGs. Deletion of the serglycin core protein abrogated the induction of enzymes operative in proteoglycan synthesis, indicating that availability of the serglycin proteoglycan core protein has a regulatory function impacting on the expression of the various serglycin-modifying enzymes. MEK1/2 inhibition also caused a substantial increase in the expression of granule-localized, proteoglycan-binding proteases. Altogether, this study identifies a novel role for MAPK signaling in regulating the content of secretory granules in MCs.

12.
Curr Opin Struct Biol ; 50: 101-108, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29455055

RESUMEN

Glycosaminoglycans (GAGs) interact with a variety of proteins with important functions in development and homeostasis. Most of these proteins bind to heparin in vitro, a highly sulfated GAG species, although heparan sulfate and/or chondroitin/dermatan sulfate are more frequent physiological ligands. Binding affinity and specificity are determined by charge distribution, mainly due to sulfate and carboxylate groups and by GAG chain conformation. Interactions may be nonspecific, essentially reflecting charge density or highly specific, dependent on rare GAG-structural features. Yet other GAG epitopes bind protein ligands with intermediate specificity and variable affinity. Studies of heparan sulfate biosynthesis point to stochastic but strictly regulated, cell-specific polymer modification. Together, these features allow for graded modulation of protein functional response.


Asunto(s)
Glicosaminoglicanos/química , Proteínas/química , Glicosaminoglicanos/metabolismo , Modelos Moleculares , Conformación Molecular , Unión Proteica , Proteínas/metabolismo , Relación Estructura-Actividad
13.
J Biol Chem ; 293(1): 379-389, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29138239

RESUMEN

Chondroitin sulfate proteoglycans (CSPGs) are important structural components of connective tissues in essentially all metazoan organisms. In vertebrates, CSPGs are involved also in more specialized processes such as neurogenesis and growth factor signaling. In invertebrates, however, knowledge of CSPGs core proteins and proteoglycan-related functions is relatively limited, even for Caenorhabditis elegans. This nematode produces large amounts of non-sulfated chondroitin in addition to low-sulfated chondroitin sulfate chains. So far, only nine core proteins (CPGs) have been identified, some of which have been shown to be involved in extracellular matrix formation. We recently introduced a protocol to characterize proteoglycan core proteins by identifying CS-glycopeptides with a combination of biochemical enrichment, enzymatic digestion, and nano-scale liquid chromatography MS/MS analysis. Here, we have used this protocol to map the chondroitin glycoproteome in C. elegans, resulting in the identification of 15 novel CPG proteins in addition to the nine previously established. Three of the newly identified CPGs displayed homology to vertebrate proteins. Bioinformatics analysis of the primary protein sequences revealed that the CPG proteins altogether contained 19 unique functional domains, including Kunitz and endostatin domains, suggesting direct involvement in protease inhibition and axonal migration, respectively. The analysis of the core protein domain organization revealed that all chondroitin attachment sites are located in unstructured regions. Our results suggest that CPGs display a much greater functional and structural heterogeneity than previously appreciated and indicate that specialized proteoglycan-mediated functions evolved early in metazoan evolution.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteoglicanos Tipo Condroitín Sulfato/aislamiento & purificación , Sulfatos de Condroitina/metabolismo , Cromatografía en Gel/métodos , Glicopéptidos/metabolismo , Proteoglicanos/metabolismo , Espectrometría de Masas en Tándem/métodos
14.
J Immunol ; 199(12): 4132-4141, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29127151

RESUMEN

Copper has previously been implicated in the regulation of immune responses, but the impact of this metal on mast cells is poorly understood. In this article, we address this issue and show that copper starvation of mast cells causes increased granule maturation, as indicated by higher proteoglycan content, stronger metachromatic staining, and altered ultrastructure in comparison with nontreated cells, whereas copper overload has the opposite effects. In contrast, copper status did not impact storage of histamine in mast cells, nor did alterations in copper levels affect the ability of mast cells to degranulate in response to IgER cross-linking. A striking finding was decreased tryptase content in mast cells with copper overload, whereas copper starvation increased tryptase content. These effects were associated with corresponding shifts in tryptase mRNA levels, suggesting that copper affects tryptase gene regulation. Mechanistically, we found that alterations in copper status affected the expression of microphthalmia-associated transcription factor, a transcription factor critical for driving tryptase expression. We also found evidence supporting the concept that the effects on microphthalmia-associated transcription factor are dependent on copper-mediated modulation of MAPK signaling. Finally, we show that, in MEDNIK syndrome, a condition associated with low copper levels and a hyperallergenic skin phenotype, including pruritis and dermatitis, the number of tryptase-positive mast cells is increased. Taken together, our findings reveal a hitherto unrecognized role for copper in the regulation of mast cell gene expression and maturation.


Asunto(s)
Cobre/farmacología , Mastocitos/efectos de los fármacos , Factor de Transcripción Asociado a Microftalmía/fisiología , Triptasas/fisiología , Complejo 1 de Proteína Adaptadora/deficiencia , Complejo 1 de Proteína Adaptadora/genética , Subunidades sigma de Complejo de Proteína Adaptadora/deficiencia , Subunidades sigma de Complejo de Proteína Adaptadora/genética , Adulto , Animales , Proteínas de Transporte de Catión/metabolismo , Degranulación de la Célula/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Preescolar , Cobre/deficiencia , Cobre/fisiología , Transportador de Cobre 1 , Inducción Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Liberación de Histamina/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mastocitos/citología , Mastocitos/metabolismo , Mastocitosis Cutánea/inmunología , Mastocitosis Cutánea/patología , Ratones , Ratones Endogámicos C57BL , Proteoglicanos/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de IgE/inmunología , Piel/patología , Síndrome , Triptasas/biosíntesis , Triptasas/genética
15.
Bio Protoc ; 7(15): e2437, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34541157

RESUMEN

The nematode Caenorhabditis elegans is a popular model organism for studies of developmental biology, neurology, ageing and other fields of basic research. Because many developmental processes are regulated by glycosaminoglyans (GAGs) on cell surfaces and in the extracellular matrix, methods to isolate and analyze C. elegans GAGs are needed. Such methods have previously been optimized for other species such as mice and zebrafish. After modifying existing purification protocols, we could recently show that the nematodes also produce chondroitin sulfate, in addition to heparan sulfate, thus challenging the view that only non-sulfated chondroitin was synthesized by C. elegans. We here present our protocol adapted for C. elegans. Since the purification strategy involves separation of non-sulfated and sulfated GAGs, it may also be useful for other applications where this approach could be advantageous.

16.
Matrix Biol ; 62: 92-104, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27890389

RESUMEN

Heparan sulfate proteoglycans (HSPGs), ubiquitous components of mammalian cells, play important roles in development and homeostasis. These molecules are located primarily on the cell surface and in the pericellular matrix, where they interact with a multitude of macromolecules, including many growth factors. Manipulation of the enzymes involved in biosynthesis and modification of HSPG structures alters the properties of stem cells. Here, we focus on the involvement of heparanase (HPSE), the sole endo-glucuronidase capable of cleaving of HS, in differentiation of embryonic stem cells into the cells of the neural lineage. Embryonic stem (ES) cells overexpressing HPSE (Hpse-Tg) proliferated more rapidly than WT ES cells in culture and formed larger teratomas in vivo. In addition, differentiating Hpse-Tg ES cells also had a higher growth rate, and overexpression of HPSE in NSPCs enhanced Erk and Akt phosphorylation. Employing a two-step, monolayer differentiation, we observed an increase in HPSE as wild-type (WT) ES cells differentiated into neural stem and progenitor cells followed by down-regulation of HPSE as these NSPCs differentiated into mature cells of the neural lineage. Furthermore, NSPCs overexpressing HPSE gave rise to more oligodendrocytes than WT cultures, with a concomitant reduction in the number of neurons. Our present findings emphasize the importance of HS, in neural differentiation and suggest that by regulating the availability of growth factors and, or other macromolecules, HPSE promotes differentiation into oligodendrocytes.


Asunto(s)
Glucuronidasa/genética , Glucuronidasa/metabolismo , Células Madre Embrionarias de Ratones/citología , Oligodendroglía/citología , Teratoma/patología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/trasplante , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Teratoma/genética , Teratoma/metabolismo
17.
Sci Rep ; 6: 34662, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27703236

RESUMEN

Proteoglycans are proteins that carry sulfated glycosaminoglycans (GAGs). They help form and maintain morphogen gradients, guiding cell migration and differentiation during animal development. While no sulfated GAGs have been found in marine sponges, chondroitin sulfate (CS) and heparan sulfate (HS) have been identified in Cnidarians, Lophotrocozoans and Ecdysozoans. The general view that nematodes such as Caenorhabditis elegans, which belong to Ecdysozoa, produce HS but only chondroitin without sulfation has therefore been puzzling. We have analyzed GAGs in C. elegans using reversed-phase ion-pairing HPLC, mass spectrometry and immunohistochemistry. Our analyses included wild type C. elegans but also a mutant lacking two HS sulfotransferases (hst-6 hst-2), as we suspected that the altered HS structure could boost CS sulfation. We could indeed detect sulfated CS in both wild type and mutant nematodes. While 4-O-sulfation of galactosamine dominated, we also detected 6-O-sulfated galactosamine residues. Finally, we identified the product of the gene C41C4.1 as a C. elegans CS-sulfotransferase and renamed it chst-1 (CarboHydrate SulfoTransferase) based on loss of CS-4-O-sulfation in a C41C4.1 mutant and in vitro sulfotransferase activity of recombinant C41C4.1 protein. We conclude that C. elegans indeed manufactures CS, making this widely used nematode an interesting model for developmental studies involving CS.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Sulfatos de Condroitina/biosíntesis , Mutación , Sulfotransferasas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Sulfatos de Condroitina/genética , Espectrometría de Masas , Sulfotransferasas/genética
18.
Pulm Circ ; 6(3): 347-59, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27683612

RESUMEN

Pulmonary arterial hypertension (PAH) is a lethal condition for which there is no effective curative pharmacotherapy. PAH is characterized by vasoconstriction, wall thickening of pulmonary arteries, and increased vascular resistance. Versican is a chondroitin sulfate proteoglycan in the vascular extracellular matrix that accumulates following vascular injury and promotes smooth-muscle cell proliferation in systemic arteries. Here, we investigated whether versican may play a similar role in PAH. Paraffin-embedded lung sections from patients who underwent lung transplantation to treat PAH were used for immunohistochemistry. The etiologies of PAH in the subjects involved in this study were idiopathic PAH, scleroderma, and congenital heart disease (atrial septal defect) with left-to-right shunt. Independent of the underlying etiology, increased versican immunostaining was observed in areas of medial thickening, in neointima, and in plexiform lesions. Western blot of lung tissue lysates confirmed accumulation of versican in patients with PAH. Double staining for versican and CD45 showed only occasional colocalization in neointima of high-grade lesions and plexiform lesions. In vitro, metabolic labeling with [(35)S]sulfate showed that human pulmonary artery smooth-muscle cells (hPASMCs) produce mainly chondroitin sulfate glycosaminoglycans. In addition, hypoxia, but not cyclic stretch, was demonstrated to increase both versican messenger RNA expression and protein synthesis by hPASMCs. Versican accumulates in vascular lesions of PAH, and the amount of versican correlates more with lesion severity than with underlying etiology or inflammation. Hypoxia is a possible regulator of versican accumulation, which may promote proliferation of pulmonary smooth-muscle cells and vascular remodeling in PAH.

19.
J Biol Chem ; 291(36): 18600-18607, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27387504

RESUMEN

Analysis of heparan sulfate synthesized by HEK 293 cells overexpressing murine NDST1 and/or NDST2 demonstrated that the amount of heparan sulfate was increased in NDST2- but not in NDST1-overexpressing cells. Altered transcript expression of genes encoding other biosynthetic enzymes or proteoglycan core proteins could not account for the observed changes. However, the role of NDST2 in regulating the amount of heparan sulfate synthesized was confirmed by analyzing heparan sulfate content in tissues isolated from Ndst2(-/-) mice, which contained reduced levels of the polysaccharide. Detailed disaccharide composition analysis showed no major structural difference between heparan sulfate from control and Ndst2(-/-) tissues, with the exception of heparan sulfate from spleen where the relative amount of trisulfated disaccharides was lowered in the absence of NDST2. In vivo transcript expression levels of the heparan sulfate-polymerizing enzymes Ext1 and Ext2 were also largely unaffected by NDST2 levels, pointing to a mode of regulation other than increased gene transcription. Size estimation of heparan sulfate polysaccharide chains indicated that increased chain lengths in NDST2-overexpressing cells alone could explain the increased heparan sulfate content. A model is discussed where NDST2-specific substrate modification stimulates elongation resulting in increased heparan sulfate chain length.


Asunto(s)
Amidohidrolasas/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Heparitina Sulfato/biosíntesis , Modelos Biológicos , Sulfotransferasas/biosíntesis , Transcripción Genética/fisiología , Amidohidrolasas/genética , Animales , Células HEK293 , Heparitina Sulfato/genética , Humanos , Ratones , Ratones Noqueados , N-Acetilglucosaminiltransferasas/biosíntesis , N-Acetilglucosaminiltransferasas/genética , Sulfotransferasas/genética
20.
BMC Immunol ; 17(1): 15, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27267469

RESUMEN

BACKGROUND: Serglycin proteoglycans are essential for maturation of secretory granules and for the correct granular storage of cationic proteases in hematopoietic cells, e.g. mast cells. However, little is known about the in vivo functions of serglycin proteoglycans during infection. Here we investigated the potential role of serglycin proteoglycans in host defense after infection with the nematode Trichinella spiralis. RESULTS: Twelve days post infection lack of serglycin proteoglycans caused significantly increased enteropathy. The serglycin-deficient mice showed significantly increased intestinal worm burden, reduced recruitment of mast cells to the intestinal crypts, decreased levels of the mast cell proteases MCPT5 and MCPT6 in intestinal tissue, decreased serum levels of TNF-α, IL-1ß, IL-10 and IL-13, increased levels of IL-4 and total IgE in serum, and increased intestinal levels of the neutrophil markers myeloperoxidase and elastase, as compared to wild type mice. At five weeks post infection, increased larvae burden and inflammation were seen in the muscle tissue of the serglycin-deficient mice. CONCLUSIONS: Our results demonstrate that the serglycin-deficient mice were more susceptible to T. spiralis infection and displayed an unbalanced immune response compared to wild type mice. These findings point to an essential regulatory role of serglycin proteoglycans in immunity.


Asunto(s)
Parasitosis Intestinales/inmunología , Intestinos/inmunología , Mastocitos/inmunología , Neutrófilos/inmunología , Proteoglicanos/metabolismo , Trichinella spiralis/inmunología , Triquinelosis/inmunología , Proteínas de Transporte Vesicular/metabolismo , Animales , Movimiento Celular , Quimasas/metabolismo , Citocinas/metabolismo , Inmunidad Mucosa , Intestinos/parasitología , Mastocitos/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteoglicanos/genética , Balance Th1 - Th2 , Triptasas/metabolismo , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...